Kuo, H. A., Hong, T. Y., & Chien, C. F. (2025). A deep
reinforcement learning based digital twin framework for resilient
production planning under demand uncertainty and an empirical study in
semiconductor wafer fabrication. Computers & Industrial Engineering,
111389.(https://doi.org/10.1016/j.cie.2025.111389)
Chen, C.A., Chien, C. F., & Kuo, H. A. (2025). Hybrid
quantum annealing genetic algorithm with auxiliary resource dispatching
for TFT-LCD array photolithography scheduling and an empirical study.
Computers & Industrial Engineering.(https://doi.org/10.1016/j.cie.2025.110989)
Chen, C.A., Kuo, H. A., & Chien, C. F. (2024).
Dual-Resource Constrained Flexible Job Shop Scheduling for SMT Back-end
Production and An Empirical Study of Wearable Devices. IEEE Transactions
on Automation Science and Engineering. (https://ieeexplore.ieee.org/abstract/document/10806845)
Chien, C. F., Kuo, H. A., & Lin, Y. S. (2024). Smart
semiconductor manufacturing for pricing, demand planning, capacity
portfolio and cost for sustainable supply chain management. International
Journal of Logistics Research and Applications, 27(1), 193-216.
(https://doi.org/10.1080/13675567.2022.2076818)
Chien, C. F., Kuo, P. C., Sun, P. C., & Kuo, H. A. (2024).
Green production planning for circular supply chain and resource
management: An empirical study for high-tech textile dyeing. Resources,
Conservation and Recycling, 204, 107499. (https://doi.org/10.1080/13675567.2022.2076818)
Kuo, H. A., Chien, C. F., Ehm, H., & Ponsignon, T. (2023).
A semantic web-based risk assessment framework for collaborative planning
to enhance overall supply chain effectiveness for semiconductor industry.
Applied Soft Computing, 149, 110976. (https://doi.org/10.1016/j.asoc.2023.110976)
Kuo, H. A., Peng, C. C., & Chien, C. F. (2023).
Subpopulation preference adjective non-dominated sorting genetic algorithm
for multi-objective capacity expansion for matured fabs. Applied Soft
Computing, 147, 110772. (https://doi.org/10.1016/j.asoc.2023.110772)
Kuo, H. A., & Chien, C. F. (2023). Semiconductor capacity
expansion based on forecast evolution and mini-max regret strategy for
smart production under demand uncertainty. Computers & Industrial
Engineering, 177, 109077. (https://doi.org/10.1016/j.cie.2023.109077)
Conference Papers
國際會議
Tsai, N. S., & Kuo, H. A. (2026) A digital
transformation framework for root cause analysis to drive smart
manufacturing and an empirical study for backend equipment vendor, 2026
13th International Conference on Industrial Engineering and Applications
(ICIEA 2026).
Tsai, P. Y., Chen, Y. M., Kuo, H. A., & Chien,
C. F. (2025) New Product Cycle Time Prediction Considering Production
Dynamics and an Empirical Study in Semiconductor Wafer Fabrication, In
Proceedings of 25rd Asia Pacific Industrial Engineering & Management
System Conference AND The 28th Asia Pacific Division Meeting of The
International Foundation for Production Research (APIEMS2025).
Chen, Z. X., Kuo, H. A., & Chien, C. F. (2025)
Data-Driven Framework for Predictive Maintenance Decision Making in IC
Substrates Manufacturing, In Proceedings of the International Conference
on Industrial Engineering and Operations Management
Chen, Y., M., Fan, T., L., Kuo, H. A., &
Chien, C. F. (2024). Advanced cycle time prediction for semiconductor
manufacturing industry and an empirical study, In Proceedings of 24rd Asia
Pacific Industrial Engineering & Management System Conference AND The
27th Asia Pacific Division Meeting of The International Foundation for
Production Research (APIEMS2024).
Kuo, H. A., Sun, P. C., Lin, Y. S., & Chien,
C. F. (2023). A deep reinforcement learning based digital twin framework
for resilient production planning and an empirical study in semiconductor
wafer fabrication. In Proceedings of International Conference on Computers
and Industrial Engineering, Computers & Industrial Engineering (CIE).
Kuo, H. A., Lin, Y. S., Sun, P. C., & Chien,
C. F. (2023). A hybrid collaborative demand fulfillment framework for
printed circuit board production planning to empower symbolic supply chain
in post epidemic era, In Proceedings of International Conference on
Computers and Industrial Engineering, Computers & Industrial
Engineering (CIE).
Yang, H. Y., Kuo, H. A., Tseng, P. H, & Chien,
C. F (2023). Multi-Objective Production Planning Using Particle Swarm
Algorithm Considering Uncertain Production Time and Case Study, In
Proceedings of International Conference on Chinese Institute of Industrial
Engineers (CIIE).
Tseng, P. H, Kuo, H. A., Yang, H. Y., & Chien,
C. F (2023). Modified allocated clearing functions based on machine
learning for semiconductor frontend production planning model and an
empirical study, In Proceedings of 23rd Asia Pacific Industrial Engineering
& Management System Conference AND The 26th Asia Pacific Division
Meeting of The International Foundation for Production Research
(APIEMS2023)
Chang, Y. L, Kuo, H. A., & Chien, C. F (2023).
Machine learning based cycle time prediction in printed circuit board
laser process, In Proceedings of International Conference on Chinese
Institute of Industrial Engineers (CIIE).
Chen, C. Y., Kuo, H. A., Ma, K. T. & Chien, C.
F., (2020) A Human-experience based intelligent scheduling framework to
empower Industry 3.5: Implementation of Simulated Annealing Genetic
Algorithm in Multi Auxiliary Resource Planning for Job Shop Scheduling in
multinational technology manufacturing. Operations Research Society of
Taiwan 2020 conference
Kuo, H. A., Ponsignon, T., Ehm, H., & Chien,
C. F. (2019, April). Overall Supply Chain Effectiveness (OSCE) for Demand
and Capacity Incorporation in Semiconductor Supply Chain Industry. In 2019
IEEE International Conference on Smart Manufacturing, Industrial &
Logistics Engineering (SMILE) (pp. 24-28). IEEE.
Hsu, C., Kuo, H. A., Chien, J. C., Fu, W., Ma, K.
T., & Chien, C. F. (2019, March). A machine learning based intelligent
agent for human resource planning in IC design service industry. In
Proceedings of the International Conference on Industrial Engineering and
Operations Management (pp. 3758-3768). MAR.